Convolution bialgebra of a Lie groupoid and transversal distributions
نویسندگان
چکیده
For a Lie groupoid G over smooth manifold M we construct the adjoint action of étale # germs local bisections on algebroid g . With this action, form associated convolution C c ∞ ( ) / R -bialgebra , We represent in algebra transversal distributions This construction extends Cartier-Gabriel decomposition Hopf with finite support group.
منابع مشابه
The Monodromy Groupoid of a Lie Groupoid
R esum e: Nous d emontrons que, sous des circomstances g en erales, l'union disjoint des couvertes universales des etoiles d'un groupo de de Lie admet le structure d'un groupo de de Lie auquel que le projection a une propri et e de monodromie sur les extensions des morphismes emousse. Ca compl etes une conte d etailles des r esultats annonc es par J. Pradines. Introduction The notion of monodro...
متن کاملA New Lie Bialgebra Structure
We describe the Lie bialgebra structure on the Lie superalgebra sl(2, 1) related to an r−matrix that cannot be obtained by a Belavin-Drinfeld type construction. This structure makes sl(2, 1) into the Drinfeld double of a four-dimensional subalgebra. It is well-known that non-degenerate r−matrices (describing quasitriangular Lie bialgebra structures) on simple Lie algebras are classified by Bela...
متن کاملInfinite Convolution Products and Refinable Distributions on Lie Groups
Sufficient conditions for the convergence in distribution of an infinite convolution product μ1 ∗μ2 ∗ . . . of measures on a connected Lie group G with respect to left invariant Haar measure are derived. These conditions are used to construct distributions φ that satisfy Tφ = φ where T is a refinement operator constructed from a measure μ and a dilation automorphism A. The existence of A implie...
متن کاملThe Double and Dual of a Quasitriangular Lie Bialgebra
Let G be a connected, simply connected Poisson–Lie group with quasitriangular Lie bialgebra g. An explicit description of the double D(g) is given, together with the embeddings of g and g∗. This description is then used to provide a construction of the double D(G). The aim of this work is to describe D(G) in sufficient detail to be able to apply the procedures of Semenov-TianShansky and Drinfel...
متن کاملNormal Forms and Lie Groupoid Theory
In these lectures I discuss the Linearization Theorem for Lie groupoids, and its relation to the various classical linearization theorems for submersions, foliations and group actions. In particular, I explain in some detail the recent metric approach to this problem proposed in [6]. Mathematics Subject Classification (2010). Primary 53D17; Secondary 22A22.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2022
ISSN: ['1879-1662', '0393-0440']
DOI: https://doi.org/10.1016/j.geomphys.2022.104642